Solutions for your hydro business!

- Site identification and reconnaissance studies
- Preliminary site assessments
- Feasibility studies
- Basic and detailed designs
- Site surveys and investigations
- Construction assistances
- Project management
- Construction management
- Technical due diligences
- Project proposal evaluations
- Bankability assessments
INDONESIA HYDRO™ CONSULT is a leading provider of hydro project solutions in Indonesia. We are the fastest growing hydro engineering consulting service company. We provide high quality on-site and remote consulting services for growing hydro developers nationwide and give them significant development benefit. Our objective is to enhance the success of our clients by providing solutions for projects and cost-effective consulting services for their business needs.

INDONESIA HYDRO™ CONSULT has expertise in the field of hydro engineering nationwide. The experience gained from site reconnaissance, planning and studies, design and design reviews, and construction assistances have made us capable to offer comprehensive consultancy services. Our benefits from the previous projects enable us to offer improvement at every step of the project. Our experience and resources enable innovative development to assemble project teams quickly, based on the technical requirements of each project.

As a major player in our nationwide market, INDONESIA HYDRO™ CONSULT bring to their clients engineering services for hydropowers, dams, hydraulic structures and river managements, from reconnaissance study to operation. Their technical excellence is the keystone of the success behind the projects.

2010
INDONESIA HYDRO™ CONSULT was founded by Dhani Irwanto, in response to the high demand of consulting services for hydropower developers nationwide.

2011
Endorsed by the Minister of Trade. Meanwhile had carried out 15 hydropower projects and began to become reference by hydropower developers and lending banks.

2012
Internationally recognized. There were booming hydropower projects, more than 50 projects have been undertaken. Become the main reference for lending banks.

2016
Has received 9 awards for best innovative, leading, trusted, reliable, improved consultant.

Today
More than 100 projects has been undertaken. Have carried out more than 500 preliminary site assessment studies. Began to expand the business to the neighboring countries.

Dhani Irwanto is a senior civil engineer who has professional experience in hydropower, dam and hydraulic structures since 1987. He has been involved in more than 200 hydropower projects in Indonesia. He has the capability of developing softwares, mainly to support his work. He is trained on hydropower and dam engineering, and investment appraisal on infrastructure projects.
Site identification and reconnaissance studies
Site identification of potential sites and reconnaissance studies of cost-effectiveness of sites.

Preliminary site assessments
Preliminary assessments of sites to estimate site potential, preliminary estimate of project cost and preliminary feasibility of project sites. Our abundant collections of maps, hydro-meteorological data and hydropower plant database are very useful to do the assessments. SimPower software is used in the analysis.

Feasibility studies
Feasibility assessments of project sites including hydrological analysis, site surveys and investigations, project layout and basic design, project cost estimates and project financial feasibility.

Basic and detailed designs
Basic and detailed design of project sites including preparation of engineering calculations and analysis, basic and detailed drawings, bill of quantities, project cost estimates, technical specifications, bid documents and artist’s impressions.

Site surveys and investigations
Site surveys and investigations to support project preparations including topographic surveys, geological and geotechnical investigations, construction material surveys and hydrological observations.

Construction assistances
Engineering assistances to support procurement and construction activities of projects.

Project management
Management of projects including initiation, planning and design, execution and construction, monitoring and controlling systems, and completion of projects.

Construction management
Management in construction works to optimize use of available funds, control the scope of works, control the project schedule, optimize use of design and construction firms’ skills and talents, avoid delays, changes and disputes, enhance project design and construction quality, optimize flexibility in contracting and procurement; and manage project cash flow.

Technical due diligences
Detailed technical examinations of projects before becoming involved in business arrangement.

Project proposal evaluations
Evaluations of proposed projects to be developed to assess their favorability for investments.

Bankability assessments
Evaluate the bankability of projects from technical point of view.
INDONESIA HYDRO™ CONSULT has expertise in the field of hydro engineering nationwide. Our experience and resources enable innovative development to assemble project teams quickly, based on the technical requirements of each project.

The following list shows the projects and sites have been and being undertaken, not including preliminary assessment of more than 500 sites, and projects under permitting process.

1. Study of Small Hydropower Potentials in Terengganu, Malaysia
2. Kepahiang Hydropower Project (27.5 MW) in Kepahiang, Bengkulu, Indonesia
3. Lubu Hydropower Project (20 MW) in Pasaman, West Sumatera, Indonesia
4. Koro Lariang Hydropower Project (115 MW) in Sigi, Central Sulawesi, Indonesia
5. Koro Yaentu Hydropower Project (17 MW) in Poso, Central Sulawesi, Indonesia
6. Agam Sipinang Hydropower Project (620 kW) in Agam, West Sumatera, Indonesia
7. Pasaman Malampah Hydropower Project (310 kW) in Pasaman, West Sumatera, Indonesia
8. Kuala Hydropower Project (18 MW) in Toba Samosir, North Sumatera, Indonesia
9. Bungin 3 Hydropower Project (5 MW) in Enrekang, South Sulawesi, Indonesia
10. Serayu Hydropower Project (18 MW) in Banyumas, Central Java, Indonesia
11. Ciarinem Hydropower Project (4 MW) in Garut, West Java, Indonesia
12. Bontomatene Hydropower Project (2.2 MW) in Goa, South Sulawesi, Indonesia
<table>
<thead>
<tr>
<th>Projects Undertaken</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Potential Screening of 50 Hydropower Sites in Dam, Indonesia</td>
</tr>
<tr>
<td>14. Majasari Hydropower Project (8 MW) in Banjarnegara, Central Java, Indonesia</td>
</tr>
<tr>
<td>15. Kotaagung Hydropower Project (28 MW) in Kepahiang, Bengkulu, Indonesia</td>
</tr>
<tr>
<td>16. Pongkor Hydropower Project (7.5 MW) in Bogor, West Java, Indonesia</td>
</tr>
<tr>
<td>17. Lubukgadang Hydropower Project (8 MW) in South Solok, West Sumatera, Indonesia</td>
</tr>
<tr>
<td>18. Lambur Hydropower Project (8 MW) in Pekalongan, Central Java, Indonesia</td>
</tr>
<tr>
<td>19. Harjosari Hydropower Project (10 MW) in Pekalongan, Central Java, Indonesia</td>
</tr>
<tr>
<td>20. Gunungwugul Hydropower Project (3 MW) in Banjarnegara, Central Java, Indonesia</td>
</tr>
<tr>
<td>21. Small Hydro Resource Mapping in Indonesia</td>
</tr>
<tr>
<td>22. Ketelang Hydropower Project (4 MW) in Lebong, Bengkulu, Indonesia</td>
</tr>
<tr>
<td>23. Bayang Hydropower Project (5.8 MW) in Pesisir Selatan, West Sumatera, Indonesia</td>
</tr>
<tr>
<td>24. Cibalapulang 3 Hydropower Project (6 MW) in Cianjur, West Java, Indonesia</td>
</tr>
<tr>
<td>25. Cibalapulang 2 Hydropower Project (6.5 MW) in Cianjur, West Java, Indonesia</td>
</tr>
<tr>
<td>26. Windusari Hydropower Project (4 MW) in Banjarnegara, Central Java, Indonesia</td>
</tr>
<tr>
<td>27. Limbangan Hydropower Project (5 MW) in Banjarnegara, Central Java, Indonesia</td>
</tr>
<tr>
<td>28. Ranteangin 8 Hydropower Project in North Kolaka, Southeast Sulawesi, Indonesia</td>
</tr>
<tr>
<td>29. Ranteangin 7 Hydropower Project in North Kolaka, Southeast Sulawesi, Indonesia</td>
</tr>
<tr>
<td>30. Ranteangin 6 Hydropower Project in North Kolaka, Southeast Sulawesi, Indonesia</td>
</tr>
<tr>
<td>31. Ranteangin 5 Hydropower Project in North Kolaka, Southeast Sulawesi, Indonesia</td>
</tr>
<tr>
<td>32. Ranteangin 4 Hydropower Project in North Kolaka, Southeast Sulawesi, Indonesia</td>
</tr>
<tr>
<td>33. Ranteangin 3 Hydropower Project in North Kolaka, Southeast Sulawesi, Indonesia</td>
</tr>
<tr>
<td>34. Ranteangin 2 Hydropower Project in North Kolaka, Southeast Sulawesi, Indonesia</td>
</tr>
<tr>
<td>35. Ranteangin 1 Hydropower Project in North Kolaka, Southeast Sulawesi, Indonesia</td>
</tr>
<tr>
<td>36. Lasusua 2 Hydropower Project in North Kolaka, Southeast Sulawesi, Indonesia</td>
</tr>
<tr>
<td>37. Lasusua 1 Hydropower Project in North Kolaka, Southeast Sulawesi, Indonesia</td>
</tr>
<tr>
<td>38. Komering Hydropower Project (2.6 MW) in East Ogan Komering Ulu, South Sumatera, Indonesia</td>
</tr>
<tr>
<td>39. Sumpur Hydropower Project (8 MW) in Pasaman, West Sumatera, Indonesia</td>
</tr>
<tr>
<td>40. Tinombo Hydropower Project (1.7 MW) in Parigi Moutong, Central Sulawesi, Indonesia</td>
</tr>
<tr>
<td>41. Palasa Hydropower Project (6.8 MW) in Parigi Moutong, Central Sulawesi, Indonesia</td>
</tr>
<tr>
<td>42. Lhoksandeng 3 Hydropower Project (5.4 MW) in Pidie Jaya, Aceh, Indonesia</td>
</tr>
<tr>
<td>43. Bayangnyalo Hydropower Project (7.2 MW) in Pesisir Selatan, West Sumatera, Indonesia</td>
</tr>
<tr>
<td>44. Baliase Hydropower Project (10 MW) in North Luwu, South Sulawesi, Indonesia</td>
</tr>
<tr>
<td>45. Rongkong Hydropower Project (9.6 MW) in North Luwu, South Sulawesi, Indonesia</td>
</tr>
<tr>
<td>46. Datara Hydropower Project (9 MW) in Gowa, South Sulawesi, Indonesia</td>
</tr>
<tr>
<td>47. Ketol Hydropower Projects (10 MW) in Central Aceh, Aceh, Indonesia</td>
</tr>
<tr>
<td>48. Dominanga Hydropower Project (1.3 MW) in Bolaang Mongondow, North Sulawesi, Indonesia</td>
</tr>
<tr>
<td>49. Kerpap Hydropower Project (2.5 MW) in Central Aceh, Aceh, Indonesia</td>
</tr>
<tr>
<td>50. Pusaka 1 Hydropower Project (10 MW) and Pusaka 3 Hydropower Project (3.2 MW) in Cianjur, West Java, Indonesia</td>
</tr>
<tr>
<td>51. Silinda Hydropower Project (3.6 MW) in Serdang Bedagai, North Sumatera, Indonesia</td>
</tr>
<tr>
<td>52. Muaraalangkap Hydropower Project (1.5 MW) in North Bengkulu, Bengkulu, Indonesia</td>
</tr>
<tr>
<td>53. Panyairan Hydropower Project (8.2 MW) in Garut, West Java, Indonesia</td>
</tr>
<tr>
<td>54. Jayamukti Hydropower Project (7 MW) in Garut, West Java, Indonesia</td>
</tr>
<tr>
<td>55. Malabar Hydropower Project (800 kW) in Bandung, West Java, Indonesia</td>
</tr>
</tbody>
</table>
56. Kalibening Hydropower Project (3 MW) in Banjarnegara, Central Java, Indonesia
57. Curug Malela Hydropower Project (3.2 MW) in West Bandung, West Java, Indonesia
58. Curug Citambur Hydropower Project (620 kW) in Cianjur, West Java, Indonesia
59. Cisemeut Hydropower Project (3.3 MW) in Lebak, Banten, Indonesia
60. Cisiih Leutik Hydropower Project (1.7 MW) in Lebak, Banten, Indonesia
61. Cisereuh Hydropower Project (2.1 MW) in Sukabumi, West Java, Indonesia
62. Cileteuh Hydropower Project (1.8 MW) in Sukabumi, West Java, Indonesia
63. Cibareno Hydropower Project (2.9 MW) in Lebak, Banten, Indonesia
64. Cibalapulang 1 Hydropower Project (10 MW) in Cianjur, West Java, Indonesia
65. Palumbungan Hydropower Project (1.7 kW) in Purbalingga, Central Java, Indonesia
66. Air Meo Hydropower Project (2 × 1350 MW) in Muaraenim, South Sumatera, Indonesia
67. Tina Hydropower Project (10 MW) in Buru, Maluku, Indonesia
68. Pusuk Hydropower Project (6.2 MW) in Humbang Hasundutan, North Sumatera, Indonesia
69. Parduaan Hydropower Project (10 MW) in Humbang Hasundutan, North Sumatera, Indonesia
70. Nambadia Hydropower Project (10 MW) in Humbang Hasundutan, North Sumatera, Indonesia
71. Tornauli Hydropower Project (8 MW) in Humbang Hasundutan, North Sumatera, Indonesia
72. Lae Ordi 2 Hydropower Project (7.6 MW) in Pakpak Barat, North Sumatera, Indonesia
73. Cicatih Hydropower Project (6.4 MW) in Sukabumi, West Java, Indonesia
74. Sambirata Hydropower Project (1.5 MW) in Banyumas, Central Java, Indonesia
75. Ambal Hydropower Project (2.1 MW) in Banjarnegara, Central Java, Indonesia
76. Banjaran Hydropower Project (2.2 MW) in Banyumas, Central Java, Indonesia
77. Babakan Hydropower Project (1.34 MW) in Banyumas, Central Java, Indonesia
78. Baseh Hydropower Project (1.9 MW) in Banyumas, Central Java, Indonesia
79. Sunyalangu Hydropower Project (1.5 MW) in Banyumas, Central Java, Indonesia
80. Singgi Hydropower Project (220 kW) in Banjarnegara, Central Java, Indonesia
81. Kincang Hydropower Project (320 kW) in Banjarnegara, Central Java, Indonesia
82. Adipasir Tiga Hydropower Project (320 kW) in Banjarnegara, Central Java, Indonesia
83. Adipasir Dua Hydropower Project (340 kW) in Banjarnegara, Central Java, Indonesia
84. Adipasir Satu Hydropower Project (340 kW) in Banjarnegara, Central Java, Indonesia
Friendship:
- care for each other,
- give each other support and comfort,
- honor honesty, trust, loyalty and unconditional acceptance.

Trust:
- authentic and consistent,
- have integrity, compassion, lots common sense and many friends
- be kind, humble, open and attach importance to others.

Friendship-and-trust-based business

Unique and quality works
Create unique works that can not be produced by others.

Q Give works with excessive quality.

Give more than requested.

Give appreciations for their achievements.

Not working, but creating masterpiece
Working: make money is a priority.
Creating masterpiece: producing artistry is priority, money is the result.

Relaxed and fun atmosphere
No restriction of working hours.

Can work anywhere.

Can dress as they like.

In fresh air, away from city crowd.

Joking, regardless of positions.

Make employees comfortable to work.

Take advantage of cutting-edge technology

Take advantage of cutting-edge technology

Inside Us
Why you need us?

Hydro projects are considered as having high risk in costs and revenues since they highly dependent on water resources availability and site specific structures. Comprehensive planning, engineering, procurement, construction and operation as well as skilled and experienced personnel are highly required to minimize the risk. Failures in employing each of them may cause whole project failures.

Cost effectiveness and risk are key points of a success developer, achieving them requires comprehensive, efficient and optimized planning, surveys, investigations, analysis, design, project management and project supervision.

We have experience gained from every step of the projects undertaken that made us capable to offer comprehensive consultancy services emerging in efficient and cost-effective solutions for your business needs.